Vol. 13 No. 1 (2022): The Bibliographic Control in the Digital Ecosystem
Articles

Artificial intelligence, machine learning and bibliographic control. DDC Short Numbers - Towards machine-based classifying

Elisabeth Mödden
Deutsche Nationalbibliothek
Bio

Published 2022-01-13

Keywords

  • Dewey Decimal Classification,
  • DDC short numbers,
  • Artificial intelligence,
  • Machine-based classification

How to Cite

Mödden, Elisabeth. 2022. “Artificial Intelligence, Machine Learning and Bibliographic Control. DDC Short Numbers - Towards Machine-Based Classifying”. JLIS.It 13 (1):256-64. https://doi.org/10.4403/jlis.it-12775.

Abstract

Digital publications now account for the majority of new accessions at the German National Library each year. Due to this growing number, it has become quite challenging to collect and catalogue these items properly. At the same time, these changes allow for new ways, in which it can use the collections. For a number of years, the DNB has been addressing the question of how subject cataloguing processes can be automated so that bibliographic records can be enriched with metadata as comprehensively and uniformly as possible. In the course of introducing automated subject cataloguing procedures, work is also being done on the automated assignment of Dewey Decimal Classification numbers. For this purpose, a set of abridged DDC numbers based on is being developed. The article sheds light on how artificial intelligence is used in this process. Furthermore, the challenges posed by the development of DDC short numbers and machine-based classification for different scientific subjects will be addressed. Also, it discusses how the DNB deals with the issues of data provenance, data delivery and quality management.

Metrics

Metrics Loading ...

References

  1. “Annif – Tool for Automated Subject Indexing”. n.d. Accessed 30 July 2021. http://annif.org/.
  2. “Cataloguing Media Works”. n.d. Accessed 29 July 2021. https://www.dnb.de/EN/Professionell/
  3. Erschliessen/erschliessen_node.html.
  4. “Deutsche Nationalbibliografie”. 2019. https://www.dnb.de/EN/Professionell/Metadatendienste/
  5. Metadaten/Nationalbibliografie/nationalbibliografie.html.
  6. Deutsche Nationalbibliothek. 2016a. 2025: Strategic Compass. Leipzig, Frankfurt, M: Deutsche
  7. Nationalbibliothek. https://d-nb.info/1112299556/34.
  8. Deutsche Nationalbibliothek. 2016b. Strategic Priorities 2017–2020. Leipzig, Frankfurt, M: Deut-
  9. sche Nationalbibliothek. https://d-nb.info/1126595101/34.
  10. “Dewey Decimal Classification (DDC)”. n.d. December. Accessed 30 July 2021. https://www.dnb.
  11. de/EN/Professionell/DDC-Deutsch/ddc-deutsch_node.html.
  12. “DNB_Strategic-Compass-2025_lesesprache_englisch.Pdf”. n.d.
  13. “Gemeinsame Normdatei (GND)”. n.d. Deutsche Nationalbibliothek. Accessed 30 July 2021. https://www.dnb.de/DE/Professionell/Standardisierung/GND/gnd_node.html.
  14. “GitHub - NatLibFi/Annif: Annif Is a Multi-Algorithm Automated Subject Indexing Tool for Libraries, Archives and Museums. This Repository Is Used for Developing a Production Version of the System, Based on Ideas from the Initial Prototype.” n.d. GitHub. Accessed 30 July 2021. https://github.com/NatLibFi/Annif.
  15. Gömpel, Renate, Ulrike Junger, and Elisabeth Niggemann. 2010. “Veränderungen Im Er- schließungskonzept Der Deutschen Nationalbibliothek”. Dialog Mit Bibliotheken 22 (1): 20–22.
  16. Junger, Ulrike, and Ute Schwens. 2017. “Die Inhaltliche Erschließung Des Schriftlichen Kulturel- len Erbes Auf Dem Weg in Die Zukunft”. Dialog Mit Bibliotheken 29 (2): 4–7.
  17. Mödden, Elisabeth, and Katrin Tomanek. 2012. “Maschinelle Sachgruppenvergabe Für Netzpub- likationen”. Dialog Mit Bibliotheken 24 (1): 17–24.
  18. Schöning-Walter, Christa. 2010. “PETRUS – Prozessunterstützende Software Für Die Digitale Deutsche Nationalbibliothek”. Dialog Mit Bibliotheken 22 (1): 15–19.
  19. Suominen, Osma. 2019. “DIY Automated Subject Indexing Using Multiple Algorithms”. LIBER Quarterly 29 (1): 1–25. https://doi.org/10.18352/lq.10285.
  20. “The Integrated Authority File (GND)”. n.d. December. Accessed 29 July 2021. https://www.dnb. de/EN/Professionell/Standardisierung/GND/gnd_node.html.