Vol. 14 No. 2 (2023)
Articles

Neurodegenerative clinical records analyzer: detection of recurrent patterns within clinical records towards the identification of typical signs of neurodegenerative disease history

Erika Pasceri
University of Calabria
Mérième Bouhandi
University of Nantes
Claudia Lanza
University of Calabria
Anna Perri
University of Calabria
Valentina Laganà
Association for Neurogenetic Research (ARN)
Raffaele Maletta
Regional Neurogenetic Centre, ASP
Raffaele Di Lorenzo
Regional Neurogenetic Centre, ASP
Amalia C. Bruni
Regional Neurogenetic Centre, ASP

Published 2023-05-15

Keywords

  • Alzheimer,
  • Categorization,
  • Electronic health records (EHR),
  • Machine learning,
  • Semantic annotation

How to Cite

Pasceri, Erika, Mérième Bouhandi, Claudia Lanza, Anna Perri, Valentina Laganà, Raffaele Maletta, Raffaele Di Lorenzo, and Amalia C. Bruni. 2023. “Neurodegenerative Clinical Records Analyzer: Detection of Recurrent Patterns Within Clinical Records towards the Identification of Typical Signs of Neurodegenerative Disease History”. JLIS.It 14 (2):20-38. https://doi.org/10.36253/jlis.it-522.

Abstract

When treating structured health-system-related knowledge, the establishment of an over-dimension to guide the separation of entities becomes essential. This is consistent with the information retrieval processes aimed at defining a coherent and dynamic way – meaning by that the multilevel integration of medical textual inputs and computational interpretation – to replicate the flow of data inserted in the clinical records. This study presents a strategic technique to categorize the clinical entities related to patients affected by neurodegenerative diseases. After a pre-processing range of tasks over paper-based and handwritten medical records, and through subsequent machine learning and, more specifically, natural language processing operations over the digitized clinical records, the research activity provides a semantic support system to detect the main symptoms and locate them in the appropriate clusters. Finally, the supervision of the experts proved to be essential in the correspondence sequence configuration aimed at providing an automatic reading of the clinical records according to the clinical data that is needed to predict the detection of neurodegenerative disease symptoms.

Metrics

Metrics Loading ...

References

  1. Alzheimer’s Association. 2016. «2016 Alzheimer’s disease facts and figures». Alzheimer’s & Dementia 12 (4): 459–509. DOI: https://doi.org/10.1016/j.jalz.2016.03.001
  2. Beeler, Patrick Emanuel, David Westfall Bates, e Balthasar Luzius Hug. 2014. «Clinical decision support systems». Swiss Medical Weekly 144 (w14073): 1–7. https://doi.org/doi.org/10.4414/smw.2014.14073. DOI: https://doi.org/10.4414/smw.2014.14073
  3. Bojanowski, Piotr, Edouard Grave, Armand Joulin, e Tomas Mikolov. 2017. «Enriching Word Vectors with Subword Information». Transactions of the Association for Computational Linguistics 5: 135–46. DOI: https://doi.org/10.1162/tacl_a_00051
  4. Bruni, Amalia Cecilia, Livia Bernardi, e Carlo Gabelli. 2020. «From beta amyloid to altered proteostasis in Alzheimer’s disease». Ageing research reviews 64: 101126. DOI: https://doi.org/10.1016/j.arr.2020.101126
  5. Bruni, Amalia Cecilia, Livia Bernardi, e Raffaele Maletta. 2021. «Evolution of genetic testing supports precision medicine for caring Alzheimer’s disease patients». Current Opinion in Pharmacology 60: 275–80. DOI: https://doi.org/10.1016/j.coph.2021.08.004
  6. Casanova, Eugenio. 1928. Archivistica. Siena: Stab. arti grafiche Lazzeri.
  7. Chalapathy, Raghavendra, Ehsan Zare Borzeshi, e Massimo Piccardi. 2016. «Bidirectional LSTM-CRF for Clinical Concept Extraction». Arxiv.
  8. Conrado, Merley, Thiago Pardo, e Solange Rezende. 2013. «A Machine Learning Approach to Automatic Term Extraction using a Rich Feature Set». In Proceedings of the 2013 NAACL HLT Student Research Workshop. Association for Computational Linguistics. https://aclanthology.org/N13-2003.
  9. Coronato, Antonio, Giuseppe Di Pietro, Amalia Cecilia Bruni, Erika Pasceri, Maria Teresa Chiaravalloti, e Giovanni Paragliola. 2014.
  10. «ALPHA: an eAsy inteLligent service Platform for Healthy Ageing». In Ambient Assisted Living, a cura di Bruno Andò, Pietro Siciliano, Vincenzo Marletta, e Andrea Monteriù. Springer.
  11. Devlin, Jacob, Ming-Wei Chang, Kenton Lee, e Kristina Toutanova. 2019. «BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding». arXiv. http://arxiv.org/abs/1810.04805.
  12. Graves, Alex, Santiago Fernàndez, e Jürgen Schmidhuber. 2005. In ICANN’05: Proceedings of the 15th international conference on Artificial neural networks: formal models and their applications - Volume Part II, a cura di Duch Włodzisław, Janusz Kacprzyk, Zadrozny Sławomi, e Oja Erkku. Berlin, Heidelberg: Springer-Verlag.
  13. Harris, Zellig S. 1954. «Distributional Structure». WORD 10 (2–3): 146–62. https://doi.org/10.1080/00437956.1954.11659520. DOI: https://doi.org/10.1080/00437956.1954.11659520
  14. Hassanzadeh, Hamed, Anthony Nguyen, e Bevan Koopman. 2016. «Evaluation of Medical Concept Annotation Systems on Clinical Records». In Proceedings of the Australasian Language Technology Association Workshop 2016, 15–24. https://aclanthology.org/U16-1002.
  15. Hjørland, Birger. 2016. «Knowledge Organization». Knowledge Organization 43 (7): 475–84. DOI: https://doi.org/10.5771/0943-7444-2016-6-475
  16. Huang, Zhiheng, Wei Xu, e Kai Yu. 2015. «Bidirectional LSTM-CRF Models for Sequence Tagging». arXiv. http://arxiv.org/abs/1508.01991.
  17. Kharbanda, Elyse O., Steve E. Asche, Alan R. Sinaiko, Heidi L. Ekstrom, James D. Nordin, Nancy E. Sherwood, Patricia L. Fontaine, Steven
  18. P. Dehmer, Deepika Appana, e Patrick O’Connor. 2018. «Clinical Decision Support for Recognition and Management of Hypertension: A Randomized Trial». Pediatrics 141 (2): e20172954. https://doi.org/10.1542/peds.2017-2954. DOI: https://doi.org/10.1542/peds.2017-2954
  19. Klassen, Prescott, Fei Xia, e Meliha Yetisgen. 2016. «Annotating and Detecting Medical Events in Clinical Notes». In Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC’16). European Language Resources Association.
  20. Lafferty, John, Andrew McCallum, e Fernando C. N. Pereira. 2001. «Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Dataand Labeling Sequence Data». Computer Science.
  21. Laganà, Valentina, Francesco Bruno, Natalia Altomari, Giulia Bruni, Nicoletta Smirne, Sabrina Curcio, Maria Mirabelli, et al. 2022.
  22. «Neuropsychiatric or Behavioral and Psychological Symptoms of Dementia (BPSD): Focus on Prevalence and Natural History in
  23. Alzheimer’s Disease and Frontotemporal Dementia». Frontiers in Neurology 13 (giugno): 832199. https://doi.org/10.3389/fneur.2022.832199. DOI: https://doi.org/10.3389/fneur.2022.832199
  24. Li, Irene, Jessica Pan, Jeremy Goldwasser, Neha Verma, Wai Pan Wong, Muhammed Yavuz Nuzumlalı, Benjamin Rosand, et al. 2021. «Neural Natural Language Processing for Unstructured Data in Electronic Health Records: a Review». arXiv. http://arxiv.org/abs/2107.02975. DOI: https://doi.org/10.1016/j.cosrev.2022.100511
  25. Lodolini, Elio. 2011. Archivistica. Principi e problemi. Milano: Franco Angeli.
  26. Mazzocchi, Fulvio. 2018. «Knowledge organization system (KOS)». Knowledge Organization 45 (1): 54–78. DOI: https://doi.org/10.5771/0943-7444-2018-1-54
  27. Mikolov, Tomas, Kai Chen, Greg Corrado, e Jeffrey Dean. 2013. «Efficient Estimation of Word Representations in Vector Space». arXiv. http://arxiv.org/abs/1301.3781.
  28. Mills, Sherri. 2019. «Electronic Health Records and Use of Clinical Decision Support». Critical Care Nursing Clinics of North America 31 (2): 125–31. https://doi.org/10.1016/j.cnc.2019.02.006. DOI: https://doi.org/10.1016/j.cnc.2019.02.006
  29. Mork, James, Alan Aronson, e Dina Demner-Fushman. 2017. «12 Years on – Is the NLM Medical Text Indexer Still Useful and Relevant?» Journal of Biomedical Semantics 8 (1): 8. https://doi.org/10.1186/s13326-017-0113-5. DOI: https://doi.org/10.1186/s13326-017-0113-5
  30. Mykowiecka, Agnieszka, Małgorzata Marciniak, e Anna Kupść. 2009. «Rule-Based Information Extraction from Patients’ Clinical Data». Journal of Biomedical Informatics 42 (5): 923–36. https://doi.org/10.1016/j.jbi.2009.07.007. DOI: https://doi.org/10.1016/j.jbi.2009.07.007
  31. Nadeau, David, e Satoshi Sekine. 2007. «A Survey of Named Entity Recognition and Classification». Lingvisticae Investigationes 30 (1): 3–26. https://doi.org/10.1075/li.30.1.03nad. DOI: https://doi.org/10.1075/li.30.1.03nad
  32. Panchendrarajan, Rrubaa, e Aravindh Amaresan. 2018. «Bidirectional LSTM-CRF for Named Entity Recognition». In Proceedings of the 32nd Pacific Asia Conference on Language, Information and Computation. Hong Kong: Association for Computational Linguistics.
  33. Patel, Pinalkumar, Disha Davey, Vishal Panchal, e Parth Pathak. 2018. «Annotation of a Large Clinical Entity Corpus». In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, 2033–42. Brussels, Belgium: Association for Computational Linguistics. DOI: https://doi.org/10.18653/v1/D18-1228
  34. Peters, Matthew E., Sebastian Ruder, e Noah A. Smith. 2019. «To Tune or Not to Tune? Adapting Pretrained Representations to Diverse Tasks». arXiv. http://arxiv.org/abs/1903.05987. DOI: https://doi.org/10.18653/v1/W19-4302
  35. Petersen, Ronald C., e Selamawit Negash. 2008. «Mild Cognitive Impairment: An Overview». CNS Spectrums 13 (1): 45–53. https://doi.org/10.1017/s1092852900016151. DOI: https://doi.org/10.1017/S1092852900016151
  36. Ruder, Sebastian, Matthew E. Peters, Swabha Swayamdipta, e Thomas Wolf. 2019. «Transfer Learning in Natural Language Processing». In Proceedings of the 2019 Conference of the North, 15–18. Minneapolis, Minnesota: Association for Computational Linguistics. https://doi.org/10.18653/v1/N19-5004. DOI: https://doi.org/10.18653/v1/N19-5004
  37. Savova, Guergana K, James J Masanz, Philip V Ogren, Jiaping Zheng, Sunghwan Sohn, Karin C Kipper-Schuler, e Christopher G Chute. 2010. «Mayo Clinical Text Analysis and Knowledge Extraction System (CTAKES): Architecture, Component Evaluation and Applications». Journal of the American Medical Informatics Association 17 (5): 507–13. https://doi.org/10.1136/jamia.2009.001560. DOI: https://doi.org/10.1136/jamia.2009.001560
  38. Schuster, M., e K.K. Paliwal. 1997. «Bidirectional recurrent neural networks». IEEE Transactions on Signal Processing 45 (11): 2673–81. https://doi.org/10.1109/78.650093. DOI: https://doi.org/10.1109/78.650093
  39. Searle, Thomas, Zeljko Kraljevic, Rebecca Bendayan, Daniel Bean, e Richard Dobson. 2019. «MedCATTrainer: A Biomedical Free Text Annotation Interface with Active Learning and Research Use Case Specific Customisation». arXiv. http://arxiv.org/abs/1907.07322. DOI: https://doi.org/10.18653/v1/D19-3024
  40. Settles, Burr. 2004. «Biomedical Named Entity Recognition using Conditional Random Fields and Rich Feature Sets». In Proceedings of the International Joint Workshop on Natural Language Processing in Biomedicine and its Applications (NLPBA/BioNLP), 107–10. Geneva, Switzerland: Coling. DOI: https://doi.org/10.3115/1567594.1567618
  41. Shellum, Jane L., Robert R. Freimuth, Steve G. Peters, Rick A. Nishimura, Rajeev Chaudhry, Steve J. Demuth, Amy L. Knopp, Timothy A. Miksch, e Dawn S. Milliner. 2016. «Knowledge as a Service at the Point of Care». AMIA ... Annual Symposium Proceedings. AMIA Symposium 2016: 1139–48.
  42. Si, Yuqi, Jingqi Wang, Hua Xu, e Kirk Roberts. 2019. «Enhancing Clinical Concept Extraction with Contextual Embeddings». Journal of the American Medical Informatics Association: JAMIA 26 (11): 1297–1304. https://doi.org/10.1093/jamia/ocz096. DOI: https://doi.org/10.1093/jamia/ocz096
  43. Spineth, Martin, Andrea Rappelsberger, e Klaus-Peter Adlassnig. 2018. «Implementing CDS Hooks Communication in an Arden-Syntax-Based Clinical Decision Support Platform». Studies in Health Technology and Informatics 255: 165–69.
  44. Stewart, Samuel Alan, Maia Elizabeth von Maltzahn, e Syed Sibte Raza Abidi. 2012. «Comparing Metamap to MGrep as a Tool for Mapping Free Text to Formal Medical Lexicons». In Knowledge Extraction and Consolidation from Social Media (KECSM 2012), 63–77.
  45. Tolley, Clare L., Sarah P. Slight, Andrew K. Husband, Neil Watson, e David W. Bates. 2018. «Improving Medication-Related Clinical Decision Support». American Journal of Health-System Pharmacy 75 (4): 239–46. https://doi.org/10.2146/ajhp160830. DOI: https://doi.org/10.2146/ajhp160830
  46. Tou, Huaixiao, Lu Yao, Zhongyu Wei, Xiahai Zhuang, e Bo Zhang. 2018. «Automatic Infection Detection Based on Electronic Medical Records». BMC Bioinformatics 19 (Suppl 5): 117. https://doi.org/10.1186/s12859-018-2101-x. DOI: https://doi.org/10.1186/s12859-018-2101-x
  47. Wu, Yonghui, Jun Xu, Min Jiang, Yaoyun Zhang, e Hua Xu. 2015. «A Study of Neural Word Embeddings for Named Entity Recognition in Clinical Text». AMIA ... Annual Symposium Proceedings. AMIA Symposium 2015: 1326–33.
  48. Zeng, Qing T., Sergey Goryachev, Scott Weiss, Margarita Sordo, Shawn N. Murphy, e Ross Lazarus. 2006. «Extracting Principal Diagnosis,
  49. Co-Morbidity and Smoking Status for Asthma Research: Evaluation of a Natural Language Processing System». BMC Medical Informatics and Decision Making 6 (luglio): 30. https://doi.org/10.1186/1472-6947-6-30. DOI: https://doi.org/10.1186/1472-6947-6-30